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The problem of oscillations of two nm~atiy coupled oscillators in resonance seems to 
have been considered for the first time by the authors of [I]. who studied the plane oscil- 
lations of an elastic pendulum (a point on a spring) ( l ). 

For small oscillations this system can be regarded as two nonlinearly coupled subsys- 
tems (two oscillators) (see Sect. 3 for details). The authors of [l] investigated the case 
of (2 : 1) nsimance of the “verttcal” and %orieontal” oscillation frequencies of an elas- 
tic pendulum. 

They employed one of the varianu of perturbation theory, namely the “method of 
seoular perturbations.“ [21. In this method the v&abBta are separated into “rapidly” and 
“slowly” varying ones, and averag$ng is carried out over the rapid9 varying variables. 
The application of this method to the resonance case has not been sufflcient.ly jrutlfied. 

We note that some adviances in the study of resonance oases in Hamiltenian systems 
(see p] ) have been made reaently. 

The reduction of nonlinear Hamiltonian systems in the resonance case to the so-called 
“normal form” p] (which is in a certafn sense the simplest form) makes it possible 10 
advance the study of txmlimar syszcms by considering their normal forms. This approach 
has already yielded some re&ts on the stabGity of Hamiltonian systems in resonance 
p-73. In the -sent paper reduction to the normal form is applied to the study of the 
oscillations of the Hamiltonian system describing nonlinearly coupled oscillators in the 
case of third-order resonanoc. 

1. Strtrmrnt of the problwn, Let us oonsider the Hamiltonian system 
describing n.nor&nearly ooupled oscillators, t e. let us assume that the Hamfhanian 
of the system is of the form 

X@,q)= Hs @, 4) + fls @t Q) + ..* + Hi @* 4 + *** 0.i) 

where Hi@, q) are homg4mmws pofynondab of degree I; here 

In the above expession Ifi tf3, are the eigcnvalues of the linearized system (*I) I 
We a&to assume that there are no muitlpk: eigenvalues, i. e, that f3i # ftj if i + j. 

Let the relation 

*) It is interesting to note that this model mblem arose in connection with the investi- 
gation of oscillations in the CO, (carbonic acid) molecule and that the qualitative re- 
sults provided by this model explain the “splitting of Raman scattering lines in carbonic 
acid” ~1% 
l * ) It is clear that fi4 (p, q) can always be reduced to this form, provided it is positive- 
definite. 
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klPl + k@s + . . . + k,,P,, = c (1.3) 

where ki are integers, be satisfied. From now on we assume the existence of just one 
(i. e. to within a constant factor) relation of the form (1.3). 

The vector k = (k,, . . . . kn) is called the resonance vector. The number k = 1 kll -I- . . . 

-.. -I- I k, 1 is called the order of resonance. 
In the event of resonance, i. e. of a relation of the form (1.3), system (1.1) is reducible 

to the so-called “normal form” p] , which is in a certain sense the simplest fosm. 
Let us consider the set of integer vectors k for which (1.3) is fulfilled. We denote the 

linear shell of these vectors by L . Let us consider the Hamiltonian r (E, q). We intmduce 
the complex variables t, = 5” + irlV, L = L - itlV (V - 1, , . .I n) 

and expand T (E, n) in a series in 6,, i,. The general term of this series is of the form 

tap = j!j &“V$V 

V=l 

where a = (a,, . . . . a,), 6 = (bi, . . . . b,J are integer vectors. 
We say that the Hamiltonian r is in normal form ff its series expansion contains only 

the “resonance” terms Calb, where [I - b E L. 
The possibility of reducing Hamiltonian (1.1) to normal form is guaranteed by the 

theorem (e.g. see 13, 61) whereby there exists a canonical tranjformation (q, p 4 E, q) 
such that Hamiltonian (1.1) is transformed into the Hamiltonian i’ (&, q) in normai form. 

From now on we shall confine our attention to the behavior of the system in the low- 
est order of resonance which satisfies (1.3). The following variant of the indicated theo- 
rem will prove useful @I: 

Theorem 1.1. let the lowest order of resonance defined by relation (1.3) be m. 
Then there exists a real polynomial canonical substitution of variables (4, p - E, q) of 
degree m - i such that Hamiltonian (1.1) becomes the Hamiltonian 

r* = i P,~,+...+~~~(P)+...+H~(P)+~~(P' W+~PJP) 
v-1 

Here Pa9 ‘PO are the canonical polar coordinates defined by the relations 

Sr=fiSiq q,=ficowo ((1-f I..., n) 

$J is the “resonance phase”, Hi (p) is i homogeneous polynomial of degree i in the 
variables p,. 

Further, 
r, (P, 9) = 

1 

2A’t/&oa\P if m==2d+i, d>i 

2A~cca$+ A,pf”, if mi!Zd, d>2 

k= i Ik,)=m, l=& JI,l=d, plk~=plk'lplkll...p~' 
a=4 lw=i 

AIplrf = 2 
Ird 

Al,k,. . l,p!Lf 'pa4 ' . . . p> ' 

Here R (Pt cp) is of degree higher than m/2 in the variables p, ;, I = (II, . . . . I,J is an 
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integer vector. 
The H amiltonian 

r = r+ - R (P, Q) (1.4) 

coincides with the normal form of the Hamiltonian i”* to wfthin terms of order higher 
than m/2- in t&e variables pp. 

The system described by Hamiltonian (1.4) is called an ” m-model system”. From 
now on we shall coWder thmwmdel systems only. (in the c&e of third-order resonan- 
ces this means that terms of order higher than ‘1, in the vatiables pa have been discarded 
from the normal form of the Hamiltonfan). 

We know p, 6] that 

JLI = Pa - -$Pl (a - 1, .:. ., n), F=I’- $ P,PY (1.5) 
V-f 

are the independent integrals of the system with Hamiltonian (1.4). 
Here kl, . . . . k, are the components of the resonance vector k (k, # 0). 

We note that Hamiltonian essentially depends on (n + 1) variables. namely on pi 
0 = 1, . . . . n) and on the resonance phase .tp. The system with Hamiltonian (1.4) is inte- 
gtable provided integtals (1.5) exist (the Liouville theorem). 

Qualitative investigation of the behavior of system (1.4) in accordance with the ini- 
tial conditions can be conveniently carried out by using integraft (1.5) to eliminate n, 
variables and to obtain a first-order autonomom differential equation for one (any) of 
the variables pi. Once one pt has been determined, the rest can be found from the inte- 

grals J, ; the phues Q$ can then be determined by quadratures from the com~pmkding 
equations fot.cpi daflned by Hamiltonian (1.4). 

In some cases it is sufplcfent to investigate the behavior of the variables pt. alone, 
since, as will be shown below, they represent the energy of the i th oscillator in the first 
appsordmation. 

1. Third-otdor r(1~oa~noa. Third-order resonances correspond to one of the 
following relationships (with the oscillators numbered accordingly) : 

01 = 2i% or ih + BI = f&i. 

We shall consider the resonance fir = 2&. The authors of [l) investigated this reso- 
nance for a system with two degrees of freedom (an eiastic pendulum), i.e. for a Hamil- 
tonian of the special form (3.2). 

We can show that in the general case of Hamiltonian (1.1). (1.2) (if the Hamiltonian 
does not contain terms of degree higher than the third in the variables P and qi the 
qualftative picture of motion for the resonance in question is of the same character as 
in the problem investigated in [ 1] ( * ). 

For simplicity (see Note 2.1) we consider a system with two degrees of freedom. In 
this case thethree-model system, i.e. the system defined by a Hamiltonian of the form 
(1.4) (m = 3) is given by the expression 

T (PV 9) = @, (2p, + ~2) + 2.4 v/PIP2a ~0s $9 ‘I = ‘PI - 2Q9 (2.1) 

We assume that the constant A # 0. 

BY virtue of (1.5) system (2.1) has the following integrals: 

l ) We note that this result partly answers one of the questions posed by M. G, Krein at 
the Fifth International Conference on Nonlinear Osci~tions (Kiev, 136% 
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J = 2Pl + Pw F = 2AJ5i&os$ (2.2) 

Integrals (2.2) enable us readily to reduce the equation for ps to the form 

+a dt I f 2A v2pss (J - pr) - PP, F1=P/A (2.3) 

A Similar equation, though in somewhat different variables, was investigated in 111. 

fi 

K!% 

Figure 1 shows the “phase portrait” (the integral CUrVeS) of 

Eq. (2.3) for several values of the integral F and a fixed 
4 value of J. 

This phase portrait contains two singular points: a saddle 

pz (pi = ps = 0) and p center (p; = 0, ps = x/d). AlI of the 

integral curves which do not pass through these smgular 
points are closed curves (cycles) intersecting the &-axis at 

a right angle. In fact 

Fig. 1 d (pt.) 2A (2J - 3~s) PS 

- = * 1/2pa” (J + pr) - FP dpr 
becomes 00 at pz’ = 0 (i.e. when the denominator is equal to zero) provided that 

6~ (2J - 3~s) # 0. 
The center corresponds to motions such that ps , and therefore (see (2.2)) Q, , remains 

constant. For example, in the elastic pendulum problem f1] this mrresponds to certain 
periodic motions of the oscillators. Since the Pirepresent the energies of the sth oscil- 

lators in the first approximation (see the expressions for pi in terms of the initial varia- 

bles of the elastic pendulum problem, namely expressions (3.8) below), it follows that 
the figure can be conveniently interpreted in terms of “pumping transfer of energy” p]. 

Periodic “pumping transfer of energy” from one oscillator to the other occurs for all 
possible values of p3 except the values associated with the singular points. This “pump- 

ing transfer” proceeds with the period 

2A v2psa (J - ps) - F? 
(2.4) 

where the integral is taken along the corresponding cycle (these periods can be expressed 

in terms of elliptic functions). 

The saddle (pi = pa = 0) is also associated with a periodic solution, but is of no inte- 
rest. 

When the initial conditions correspond to a separatrix, what we have is a limiting 
motion, The representing point arrives at the origin after an infinite time (integral 
(2.4) diverges). For initial values cl&e to those corresponding to the separatrix we have 

almost complete “pumping transfer of energy” from one oscillator to the other, and the 

process lasts “a very long time” Cl]. 

Thus, the picture of the “pumping transfer of energy” described in [l] also applies in 
the general case of resonance PI = 2Ba. 

Note 2.1. A similar picture of the “pumping transfer of energy” between reso- 
nating oscillators in the case of the above resonance likewise applies when the oscilla- 
tors are part of the system of n nonlinearly coupled oscillators. UI these cases the expres- 

sions for pr and pt (let the first and second oscillators be in resonance) depend on the 
variables associated with the remaining oscillators. 

3. The Vftt-Gorelfk problem (o#cillrtlon of en elrrtic pendu- 
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turn fn reao~aaee (8.1) ). Let us consider the problem of oscillation of an ela- 
stic pendulum in the case of (2 : 1) resomm of the vertical and horizontal 0aciBations 
using the theorem on reduction to t&e normal form. 

Following the authan of [l], we shall consider an elastic pendulum, i. e. a load sus- 
pended from a spring ; the upper end of the latter is fixed. We assume that the motion 
occurs in a piwtfculg venicai plane. In our expressions r is the inttontaneiw Etagth of 
the spring, 2, the length of the unioackd spring, 8 the angle of deviation from the v&i- 
cal. (w&h we assume to be small at all times), m the mass of the load, k the spring 
constant, and g the gravitational acceleration. The kinetic and potentiaietiwg~~ of the 
syatam aregivenby 

Let us replace r by the coordinate z equal to the elongation of the spring relative to 
its static length I = IQ + mg 1 k, i.e. let us set x = (r - 0 I 1. 

Since we are concem@d with small osciUations. we can assume that x is very small 
compared with unity. Neglecting terms of order higher than the third in the small quan- 
tfdes 5 and 6 and their derivatives, we obtain the following new expressions for the kine- 
tic and potential energies: 

Let us introduce the impulses p= = 8T / 82, ps = aT I aV associated with the coor- 
dinates z and 8. This enables us to express the HamIltonian as 

H.=T+V=& (P*s + Pee) + ,+ (eSsS + Irez) 
m’ 

- 5 zpss + y 2”zP 

m’ =mP, aa=kjm, PatgIl, 0, P>O 

Here a and g are the frequencies of the linear oscillators (in the absence of nonlinear 
coupiing). The linear canonical substitution of variables 

(3.1) 

enables us to reduce the Hamiltonian to the form 
fl 50 I/, [a (j$ -+ 214) + 2 (pp’ 4 zR1 - 721 (2P9 - ss% (3.2) 

For simplicity (without Umiting generality) we set a = 2, 3 = 1. To reduce Hamil- 
tonian (3.2) to normal form, we seek the generating function tV (L, q) for the canonical 
aanafamrtion of variables 

XI P -, &. rl9 (s = (s11 4, P = @IV Pa)* & = (&p Ed, ‘1 = (a, qab 
Here 

E,-z* pi+ (4 = 1. a) (3.3) 

Since we are limiting ourselves of terms of order not higher than the th&d in R. we 
seekthefunct&n ~(P,~)fDtheformWJ Pp, e w,, where w,r IV, are second- and 
third-cederho~ pokynotmrl, respectivefg. 

we note that ~,(seoond-dugtee mtms in a) is already in normal form, so that W, 
cbn hc ti&6n in ttbc form ws = zt]l + 4%. This is eqtt#vabnt to idandty tr&ma- 

tion (Ei = Yi pt P qi (f = I, 2)). The reduction of H = I%, + Es to the normal form 
I’ a r, -+ I’~ in accordance with the procedure of reduction to normal form (31 invo&es 



On “pumping-rransfer of energy” between nonlinearly coupled oscillators 921 

the solution of a certain partial differential equation. In out case this equation is of the 

This equation can be solved by the method of undetermined coefficients (we recall 
that Ws is a homogeneous third-degree polynomial). 

The solution of the above equation is the function 

wa = ‘I iy ~3~2% - n1 (as* + **)I 

The transformation defined by this function is of the form 

a, = Ei + ‘/‘Y W + +)t Pl- 111+ 'hYEs% 

z, = E, - %r (3&e* - 2rlllh Pa = % + l/&V (3firrh - 2tl,w 

In the new variables the Hamiltonian becomes 

a = V*[2 (W + q?) + <El* + q&f + V‘T &ms~+ hbS - h"I (3.31 

Converting to canonical polar coordinates by means of the formulas 

t = fi ain % vJi = dpi. cOS Cpi (h%* 

we obtain the Hamilto~~ in the familiar form (2. I), 

r = @Pi f P3 + %t W eos (w - 2%) (3.7) 

Thus, canonical transformation (3.5) reduces the Hamiltonian of the Vitt-Gorelik prob- 
lem to the normal form standard for third-order resonances in systems with two degrees 
of freedom (investigated in Sect, 2). 

The expressions for the variables 

= zis + pp - 
PsPA 

%T bl w + P*‘) + 31glPrl (39 
ass 9 Pns + i&Y I321 @l# - Ps3 + 2PsPr (sr + dl 

indicate that in the first approximation the pi represent the energies of the rth oscilla- 
tors; the third-order terms arise through interaction. 

Note 3. I. Let the ratlo of frequencies of the vertical and horizontal oscillations 
in the above elastic pendulum problem be (I: 2) (and not (2 : 1) as in fl]). The charac- 
ter of Hamiltonian (3.2) is such that on reduction to normal form (to within terms of 
higher than the third order of smallness) the coefficient A in expression (2.X) is equal 
to zero. Thus normal form (2. I) is degenerate in this case. This means that in contrast 
to the usual picture of the “pumping transfer of energy” in the case of third-order reso- 
nance in a system with two degrees of freedom, the analysis of nonlinear coupling effects 
in this case requires the retention of higher-order terms in the initial Hamiltonian (and 
in the normal form). This picture will be considered in more detail in a future paper, 

The author is grateful to V. V, Rumiantsev and L, G. Khazin for their interest in this 
paper and for useful comments. 
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THE AC’PICN-A&K&E VARIABLBS IN 

THE EmER-PcmacT PROfJLEM 
PMM Vol.34, NOS. 1970, pp. 962-964 

Iu. A. S ADOV 

(Receiv~d?~%, 1969) 

Use of the action-angle variables (see e. g. [l]) leads, in a number of cases, to consider- 
able simplification when the perturbation method is applied to study the dynamics of 
perturbed motion, especially when computing the higher order approximations. Below 
we obtain such variables for the problem of a solid rotating freely about a fixed point 
(the Euler-Poinsot case). , 

Free motion of a solfd with a fixed point can be described by a system of canonical 
equatfons whose Hamiltonian is p] 

Ha 
Cs-GCp &sq. 

2 ( 
cc@’ cp 

,A+ B j 
%” 

+‘ac (1) 

Here A, B, C are the principal moments of inertia of the body relative to the fixed 
point, G is the kinetic moment, Gr is its projection on the axis corresponding to the 
moment of inertia C of the associated coordinate system. and $, 6, ‘p are the E&r 
angles (of precession, nut&on and self-rotation) defining the position of the body in the 
fixed coordinate system of which one axis is collinear with the kinetic moment vector. 
Position of this vector in the initial absolute coordinate system can be defined by the 
following two quantities : L which is the projection of the kinetic moment on one axis 
of the initial Coordinate system, and the angle h. The quantities G, Cc, L, 9, ‘p, k form 
a complete set of canonical variables for the present problem. 

Change to the action-angle variables is effected by means of a canonical transforma- 
tion which transforms the Hamiltonian H into a function of impulses only. and is inde- 
pendent of the angles. 

In our problem we can use the triad G, L, I of impulses as the action variables. Here 
I is the projection of the kinetic moment on an axis of the associated coordinate system, 

averaged ova the characteristic rotation I _ 1 
“n G< dcp (2) 


